SMOOTH MANIFOLDS FALL 2022 - MIDTERM

SOLUTIONS

Problem 1. Let Γ be a countable group acting by homeomorphisms of a topological surface X. Assume that $\varphi: U \rightarrow \mathbb{R}^{2}$ is a chart of X such that

- $\bigcup_{\gamma \in \Gamma} \gamma(U)=X$, and
- for every $\gamma \in \Gamma, \varphi \circ \gamma \circ \varphi^{-1}: \varphi\left(\gamma^{-1}(U) \cap U\right) \rightarrow \varphi(U)$ is C^{∞}.

Show that there exists a smooth structure on X for which the action of Γ is C^{∞}.

Solution. We build a C^{∞} atlas of charts. It follows that a C^{∞} atlas of charts determines a unique smooth structure on X. For each $\gamma \in \Gamma$, let $\varphi_{\gamma}=\varphi \circ \gamma^{-1}: \gamma(U) \rightarrow \mathbb{R}^{n}$. Since each γ is a homeomorphism and φ is a chart, the maps φ_{γ} are homeomorphisms onto their image. Let $\mathcal{A}=\left\{\varphi_{\gamma}: \gamma \in \Gamma\right\}$. We claim that \mathcal{A} is a smooth atlas. Indeed, since $\bigcup_{\gamma \in \Gamma} \gamma(U)=X$, the domains of the charts in \mathcal{A} cover X. Furthermore, given $\varphi_{\gamma_{1}}$ and $\varphi_{\gamma_{2}}$,

$$
\varphi_{\gamma_{1}} \circ \varphi_{\gamma_{2}}{ }^{-1}=\varphi \circ\left(\gamma_{1} \gamma_{2}^{-1}\right) \circ \varphi^{-1}
$$

which is C^{∞} by assumption wherever defined. Hence, \mathcal{A} is a smooth atlas.

Problem 2. Let $\gamma: S^{1} \rightarrow \mathbb{R}^{2} \backslash\{0\}$ be a C^{∞} loop. Show that for almost every $m \in \mathbb{R}$, the image of γ intersects the line $y=m x$ in at most finitely many points.

Solution 1. Let $\pi: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R} \mathbb{P}^{1}$ denote the projection of a point x onto real projective space. We can view π as the composition of the projection of $\mathbb{R}^{2} \backslash\{0\}$ onto S^{1} by $x \mapsto x /\|x\|$, and the cover of $\mathbb{R} \mathbb{P}^{1}$ by S^{1} defined by identifying antipotal points. Crucially, the preimate of a point in $\mathbb{R} \mathbb{P}^{1}$ is exactly a line in \mathbb{R}^{2} passing through the origin, and any such line is obtained this way.

Notice that $f=\pi \circ \gamma$ is a map from a compact 1 -manifold S^{1} to a 1 -manifold $\mathbb{R P}^{1}$. By Sard's theorem, the set of regular values has full measure. By the regular value theorem, the preimage of a point in $\mathbb{R P}^{1}$ is a 0 -manifold. It must be compact because it is a subset of S^{1}, and is hence a finite set. Since the image of a finite set is finite, it follows that for any regular value of π, the intersection of the corresponding line and image of γ is finite. Finally, observe that on the set of non-vertical lines passing through, the map which associates its slope is a C^{∞} chart, and hence takes sets of measure 0 to sets of measure 0 . The result follows.

Solution 2. Consider the family of maps $\gamma_{m}(t)=\left(\begin{array}{cc}1 & 0 \\ -m & 1\end{array}\right) \gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)-m \gamma_{1}(t)\right)$. Notice that the line $y=m x$ is the image of the line $y=0$ under the map $\left(\begin{array}{cc}1 & 0 \\ m & 1\end{array}\right)$. Hence $\gamma(t)$ intersects the line $y=m x$ if and only if γ_{m} intersects the line $y=0$. We will show that the map $F: \mathbb{R} \times S^{1} \rightarrow$ $\mathbb{R}^{2} \backslash\{0\}$ defined by $F(m, t)=\gamma_{m}(t)$ is transvserse to the line $y=0$. By Sard's transversality theorem, it will follow that for almost every m, γ_{m} is transverse to the line. By the regular value theorem, the preimage will be a compact 0-manifold, ie, a finite set. Since the image of a finite set is finite, the result will follow.

Now if $F(m, t)$ belongs the the line $y=0$, it follows that $\gamma_{1}(t) \neq 0$ since $\gamma(t) \neq 0$. We compute

$$
D F(m, t)=\left(\begin{array}{cc}
0 & \gamma_{1}^{\prime}(t) \\
-\gamma_{1}(t) & \gamma_{2}^{\prime}(t)-m \gamma_{1}^{\prime}(t)
\end{array}\right)
$$

Since $\gamma_{1}(t) \neq 0$, the image of $D F$ contains a multiple of e_{2} (it is exactly the image of $\partial / \partial m$). Since the tangent bundle to the line $y=0$ is spanned by e_{1}, it follow that the image of $D F$ and the tangent bundle together span \mathbb{R}^{2}. Hence, F is transverse to $y=0$.
Solution 3 (embedded S^{1} only). Define the map $F(m, x)=(x, m x)$, and $F_{m}(x)=F(m, x)$. Then the image of F_{m} is the line $y=m x$. Furthermore, $d F=\left(\begin{array}{cc}0 & x \\ 1 & m\end{array}\right)$, so $d F$ is an isomorphism except at 0 . Since $0 \notin \operatorname{im}(\gamma)$, it follows that F is transverse to γ. By Sard's theorem for transversality, F_{m} is transverse to γ for almost every m. For each such m. the preimage of the image of γ under F_{m} is a finite collection of points, since it is a cmpact 0-manifold. Since the intersection of the image of γ and the line $y=m x$ is the image of this finite set, the image is finite for every such m.

Problem 3. Consider a C^{∞}, k-dimensional foliation \mathcal{F} on a C^{∞} manifold M. Assume that there exists a flow ψ_{t} on M such that for every leaf L of \mathcal{F} and $t \in \mathbb{R}, \psi_{t}(L)$ is also a leaf of \mathcal{F}. Furthermore, assume that if X is the generating vector field of ψ_{t}, then X is never tangent to the leaves of \mathcal{F}. Prove that the exists a $(k+1)$-dimensional foliation $\hat{\mathcal{F}}$ whose leaves contain the orbits of ψ_{t} and the leaves of \mathcal{F}.

Solution. We define a distribution E on M by

$$
E(p)=T \mathcal{F}(p) \oplus \mathbb{R} X(p)
$$

so that $\operatorname{dim}(E(p))=k+1$ at every point (since $X(p) \notin T \mathcal{F}(p)$ for any p). We claim that E is involutive. Since $T \mathcal{F}$ is the tangent bundle of a foliation \mathcal{F}, it follows that $T \mathcal{F}$ is involutive. It therefore suffices to show that if Y is a vector field subordinate to $T \mathcal{F}$, then $[X, Y]$ is subordinate to E. We will show a stronger property that $[X, Y]$ is subordinate to $T \mathcal{F}$. To compute this bracket, we firstobserve that for any $p \in M, \varphi_{t}^{Y}(p)$ is contained in the leaf of p. Therefore, $\varphi_{s}^{Y}\left(\varphi_{-t}^{X}(p)\right)$ is contained in the \mathcal{F}-leaf of $\varphi_{-t}^{X}(p)$ for all $s \in \mathbb{R}$. By the asssumption given in the problem, for every $t, s \in \mathbb{R}, \varphi_{t}^{X} \varphi_{s}^{Y} \varphi_{-t}^{X}(p)$ is contained in the \mathcal{F}-leaf of p. Hence, the derivative in s and t belongs to $T \mathcal{F}(p)$, as claimed.

Finally, by the Frobenius theorem, since E is involutive, it is integrable to a foliation. Since the orbits of ψ_{t} and leaves of \mathcal{F} are both tangent to E, it follows that the new foliation contains both of them.

